Sampling distributions

BIG IDEA: Given a population of cases and a variable on these cases, we consider the random variable "take a sample of a fixed size *n* and calculate its summary statistic."

The Sample Proportion \hat{p} (p-hat):

Starting with a population and a categorical variable, with a particular category singled out as "success", with probability p of success and q of failure, take a sample of n cases, and record the fraction of successes in the sample.

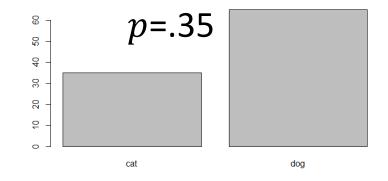
The Sample Mean \overline{y} (y-bar):

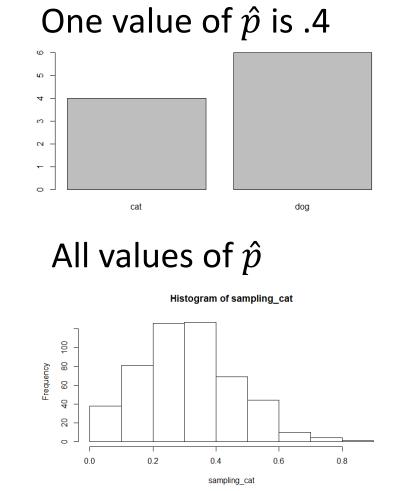
Starting with a population and a quantitative variable, take a sample of *n* cases, and record the mean of the sample.

The Sample Proportion \hat{p} (*p*-hat):

- \hat{p} is the sample proportion, p is the population proportion.
- \hat{p} is variable and p is constant.
- Each sample only gives a single value of p̂. To get the distribution of p̂, we have to take many samples.
- Warning: Even though the original variable is categorical, the proportion of successes in each sample, \hat{p} , is quantitative.
- Amazing: The sampling distribution of \hat{p} can be approximated by a normal model, with mean p

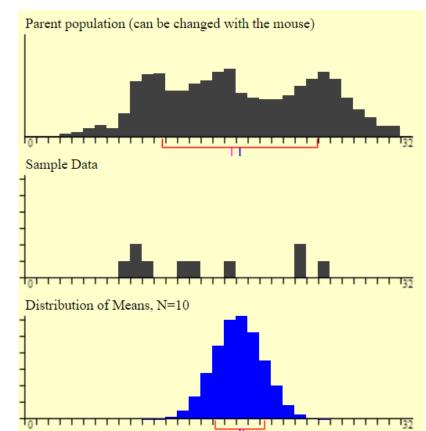
and standard deviation





The Sample Mean \overline{y} (y-bar):

- \bar{y} is the sample mean, μ is the population mean.
- \bar{y} is variable and mu is constant.
- Each sample only gives a single value of \overline{y} . To get the distribution of \overline{y} , we have to take many samples.
- Warning: There are three different sets of data, with three different histograms!
 - 1. the population, 2. the sample, 3. means of multiple samples (\bar{y} is #3.)



• **Central Limit Theorem.** The sampling distribution of \overline{y} can be approximated by a normal model, with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$. As *n* gets larger, this approximation gets better.